Canon

F-605

Scientific Calculator

CONTENTS

HOW TO OPEN / CLOSE THE COVER P. 3
DISPLAY P. 4
GETTING STARTED P. 5

1. Check the current calculation mode P. 5
2. Key symbols P. 5
3. Order of operations P. 18
4. Calculation range P. 19
5. Statistical calculations P. 21
6. Errors P. 25
CALCULATION EXAMPLES P. 26
7. Decimal calculations P. 26
8. Binary / Octal / Hexadecimal calculations P. 30
9. Basic function calculations P. 32
10. Applied calculations P. 37
11. Operation range and accuracy P. 39
BATTERY REPLACEMENT. P. 42
ADVICE AND PRECAUTIONS P. 43
SPECIFICATIONS P. 44

IMPORTANT: READ BEFORE USE

Please read the following instructions and safety precautions before using the Scientific Calculator. Keep this manual on hand for future reference.

HOW TO OPEN / CLOSE THE COVER

Open or close the cover by sliding as shown in the figures.

OPEN

CLOSE

DISPLAY

S : Shift Key
STO : Store Memory
RCL : Recall Memory
BIN : Binary Mode
OCT : Octal Mode
HEX : Hexadecimal Mode
HYP : Hyperbolic
CPLX : Complex Mode
STAT : Statistics Mode
$\sigma \quad$: Standard Deviation of Population
© : Gradient Mode
D : Degree Mode
B : Radian Mode
Note: For possible errors, see page 25 "Errors".

Examples:

Fraction (e.g. $1 \frac{2}{5}$):
1115
Hexadecimal numbers $\mathrm{A} \sim \mathrm{F}$:
盘dff

GETTING STARTED

1. Check the Current Calculation Mode

Be sure to check the status indicators that indicate the current calculation mode (DEG, BIN, STAT and CPLX) and display formats setting (Floating mode).
Note! If you get into trouble, hold $\stackrel{\text { 「HHIT }}{\square}+\stackrel{\text { RESET }}{ }$ to reset the calculator.

2. Key Symbols

Example ($\frac{\sin ^{-1} \mathrm{D}}{\mathrm{sin}]}$):
\sin To use a function printed on a key, press the key. $\sin ^{-1}$ To use a function printed above a key, press the $\square \sqrt{\text { sHIIII }}$ key while in decimal mode.
D The "D" key is colored in gray.
To use a function printed above a key in gray, press the $\stackrel{\text { sHITV }}{ }$ key while in Hexadecimal mode.

Note:

The blue keys are active in Statistic mode only. In Statistic mode ("STAT" indicator lights up), they work as follows.

Example ($\stackrel{n[\Sigma x]}{\square})$:

$\stackrel{n}{\square}$
Calculate the number of data samples when it is pressed.
$\stackrel{\Sigma x]}{ }$ 2nd function key: Calculate the summation of " Σx " data were input when it is pressed immediately after $\sqrt{\text { SHIIF }}$.

Power ON, OFF

■ First time operation:

1. Pull out the battery insulation sheet, then the battery will be loaded and the calculator can be powered on.
2. Hold $\stackrel{\text { sHIFT }}{\square}+\stackrel{\bullet \text { RESE }}{\square}$ to reset the calculator. Power ON/Clear Key: Turns the calculator on. When power is turned on, all registers except the memory registers are cleared.

$\stackrel{\text { shllf }}{ }+\stackrel{\text { OFF }}{\square}$ Power OFF Key: Turns the calculator off.

Clear Entry Key: Clears the content just entered.

Reset Key: Reset the calculator when these keys are pressed. The memory is cleared, and the calculation mode is reset to Decimal Calculation (Floating mode).
Auto Power Off Function
When the calculator is not used for about 7 minutes, the calculator will automatically power off.

Numeric Entry and Mode Selection Keys

0 ~ 9 Numeric Keys: Enters numbers.

- Decimal Point Key: Enters a decimal point.

EXP Exponential Key: Uses to enter exponents.
Example: $35 \times 10^{43} \rightarrow 3$ E EXP 4 ($35 .{ }^{43}$)
(-) Sign Change Key: For changing the sign (+ or -) of the displayed mantissa or exponents.
Example: $123 \rightarrow 1$ (2 (3
(- Backspace Key: Clears the last digit entered and shifts any remaining digits one place to the right.
Example:

Value	Operation	Display	
12345	1	2	4
incorrect entry	124.		
	5		12.
	3	4	5

SHITT
\squareShift Key: For performing second functions indicated above the keys.
Example: $\sin ^{-1} 0.5 \rightarrow 55$

Mode Selection

To specify the calculation mode:

Operation	Mode	Display Indicator
$\stackrel{\text { shrfi }}{\square} \mathrm{DEC}$	Decimal Calculation (Degree) Mode	D
$\stackrel{\text { shrfin }}{ }$	Binary Calculation Mode	BIN
$\stackrel{\text { rshrl }}{\square}$	Octal Calculation Mode	OCT
$\stackrel{\text { shlf }}{\square}$	Hexadecimal Calculation Mode	HEX
$\stackrel{\square}{\text { SHIF }}$	Statistical Calculation Mode	STAT
	Complex Number Calculation Mode	CPLX

Display Mode Keys

ENG : Engineering Exponential mode.
feNG : Return to previous mode from Engineering Exponential mode.
$F \leftrightarrow S$: Switch between Floating mode and Scientific Exponential mode.

Example:

Operation	Display	Explanation
(1) $2 \times x$	0.	Floating Mode
$100=$	1230.	
Fas	$1.23{ }^{03}$	Scientific Exponential Mode
ENG	$1.23{ }^{03}$	Engineering Exponential Mode
ENG	$1230 .{ }^{00}$	
ENG	1230000.03	
$\stackrel{\text { SHIF }}{\square}$	1230.00	Reverse Engineering Exponential

Display Range:

Floating Mode
$10^{10} \leqq|x|<10^{100}$
$10^{-99} \leqq|x|<10^{-9}$
$x=0$ or $10^{-9} \leqq|x|<10^{10}$
For exponential display
For exponential display
For mantissa display

- Scientific Exponential Mode

$$
x=0, \text { and } 10^{-99} \leqq|x|<10^{100}
$$

- Engineering Exponential Mode

$$
x=0, \text { and } 10^{-99} \leqq|x|<10^{100}
$$

Exponent: Multiple of 3

Decimal Point Selection Key

$\stackrel{\mathrm{FIX}}{\square}$ Specify the number of decimal places in the mantissa of the decimal calculation results.
Press 0 ~ 9 after $\stackrel{\text { shllir }}{\mathrm{FIX}}$ to specify the number of decimal places.
Note! To reset the decimal places, press $\stackrel{\text { shllif }}{\sim}$, $\stackrel{\mathrm{FIX}}{\square}$, then \square.
Example:

Operation	Display	Explanation
$\stackrel{\text { shlfi }}{ }{ }^{\text {Ax }} 3$	0.000	3 decimal places
(1) 23		
456		
7 7 8		
区	123456789.0	
000		
1 O	123456.789	
$\stackrel{\text { shlfi }}{ } \mathrm{FP} 0$	123457. ${ }^{\left({ }^{1}\right)}$	0 decimal places
	$123456.7890{ }^{(* 2)}$	5 decimal places
	123456.789	Reset decimal places

*1 The displayed value is rounded up within the specified range, but the actual calculation result is retained in the register.
*2 The number is displayed with left justification. In this case, 5 decimal places are specified, but only the 10 most significant digits are displayed. The 5th decimal place is not displayed.

Degree / Radian / Gradient Mode Key
DRG Change angle units.
「SHIf DRG• Angle Unit Conversion Mode: For converting angle values to different units. (DEG \rightarrow RAD \rightarrow GRAD)

- Relationship of units: $200^{\text {GRAD }}=180^{\circ}=\pi^{\text {RAD }}$

Example (in Degree mode):
$180 \stackrel{\text { sHIIF }}{\square} \stackrel{\text { DRG }}{\square}\left(3.141592654^{\text {(8) }}\right)$

Basic Calculation Keys

$+\boxed{x} \div=\quad$ Arithmetic Keys: Uses for basic arithmetic calculation.
$\%$ Percent key: Uses for percentage, add-on and discount calculations.
Example: 120 2 3 若
(1) Open, Close Parenthesis Keys

Example:

Value	Operation	Display
$\begin{aligned} & 2 \times(3+4)=14 \\ & \\ & 1+[(4-3.6+ \\ & 5) \times 0.8-6] \times \\ & 4.2 \\ & =-6.056 \end{aligned}$		14. -6.056

- Up to 15 consecutive open parentheses can be used at one time.
Example: $5 \times(((\ldots)((4+2) \times 3)+8 \ldots$
Up to 15 parentheses
- (and) are always used together. If either key is pressed alone during an operation, the intended result cannot be obtaıned.
- (key is effective only when pressed immediately after a calculation instruction.
- When \square is effective, " 0 " will be displayed. Parentheses indicators () appear on the display.

Fraction Calculation Keys

$a b /$ Fraction Key: Use this key to enter both mixed and improper fractions.
$\frac{d}{c}: d$ (numerator) $\rightarrow a b / c \rightarrow c$ (denominator).
$\mathrm{a} \frac{\mathrm{b}}{\mathrm{c}}: \mathrm{a}$ (integer) $\rightarrow a b / \mathrm{c} \rightarrow \mathrm{b}$ (numerator) $\rightarrow a \mathrm{ab/c} \rightarrow$ c (denominator)
■ The fraction $\frac{2}{3}$ is displayed as " 2$\lrcorner 3$ ", and $1 \frac{2}{5}$ as "1ㄴ 2$\lrcorner 5$ ".

Example:

Value	Operation	Display
$\begin{gathered} \frac{2}{3} \\ ------ \\ 1 \frac{2}{5} \end{gathered}$	2 $a b / c$ 3 1 $a b / c$ 2 $a b / c$ 5	

Note!

- Fraction calculation results will be displayed in decimal format automatically whenever the total digits of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
- ab/c can convert the results of fractional calculations to decimal notation, and vice versa.

Example: Calculate $1 \frac{2}{3}+4 \frac{5}{6}$ and convert the result to a decimal fraction.

Operation				Display		
1	$a b / c$	2	$a b / c$	3	+	$1 \sqcup 2\lrcorner 3$.
4	$a b$	5	$a b / c$	6	$=$	$6 \sqcup 1\lrcorner 2$.
a	a					6.5
$a b / c$						
$a b / c$					$6 \sqcup 1\lrcorner 2$.	

 Mixed / Improper Fraction Conversion Key: It converts mixed fractions to improper fractions and vice versa. It changes alternatively each time the key is pressed.
Example: Enter $\frac{10}{3}$ and convert it to a mixed fraction.

Operation	Display
(1) 0 ab/c 3	10-3.
\pm	$3 \sqcup 1-3$.
$\stackrel{d}{\text { SHFT }}$	10 3 ـ 3 .

Memory Keys

Independent Memory: The data in the independent memory is retained even when the calculator is turned off. $\mathrm{M}+\mathrm{M}^{-}$ Memory Plus and Minus Key: Add or Substract numbers to the independent memory.
MR Memory Recall Key: Retrieve the value of the independent memory.
$\mathrm{X}+\mathrm{M} \quad$ Exchange Memory By Display Value: Replaces the displayed number with the contents of the independent memory.

Memory Variables: You can assign a specific value or a calculation result to a variable. There are 6 memory variables (A, B, C, D, E and F) to store data, results, or dedicated values.
$\stackrel{\mathrm{STO}}{\square}$
Store Values Key: To store variable into memory.
RCL Recall Values Key: To recall the memory variable.

Example: Using the independent memory:

Operation	Display	Memory contents	Explanation
(1) 23	123.	0	Enter 123
\cdots	M 123.	123	Store 123
456	M 456.	579	Add 456
MR	M 579.	579	Recall from memory
788	M 789.	579	Enter 789
X \times M	M 789.	789	Replace memory with display
(${ }_{\text {CNA }}$	M 0 .	789	Clear display
$x+M$	0.	0	Clear memory

Example: Using the memory variable

Operation	Display	Memory contents	Explanation
1 $2 \times 3 \times$	36.	0	Enter value
$\stackrel{\text { shlirin }}{\square} \stackrel{\text { sTO }}{\square}$	36.	36	Store value to variable A
45 ± 6	51.	0	Enter value
$\stackrel{\text { sIIFI }}{ } \text { sto } \stackrel{c}{\square}$	51.	51	Store value to variable C
(ON	0.	$\begin{aligned} & A=36 \\ & C=51 \end{aligned}$	Clear display
$\text { RCL }{ }^{\mathrm{A}}$	36.	36	Recall the contents of variable A
	51.	51	Recall the contents of variable C

Binary / Octal / Hexadecimal Number Keys

$\stackrel{\text { sHIF }}{\square}+\stackrel{\text { DEC }}{\square} / \stackrel{\text { BIN }}{\square} / \stackrel{\text { OCT }}{\square} / \stackrel{\text { HEX }}{\square}$: To specify the

 numbering system as Decimal / Binary / Octal / Hexadecimal.Binary Number Entry Keys: $0 \sim 1$
2 ~ 9 are ignored in Binary mode.
Octal Number Entry Keys: $0 \sim 7$
8 and 9 are ignored in Octal mode.
Hexadecimal Number Entry Keys (0~9): $0 \sim 9$
Hexadecimal Number Entry Keys (10~15):
$\square^{\mathbf{A}} \sim{ }^{\mathbf{F}}$

Example:

Value	Operation	Display
		(HEX.)
AB7C	$\stackrel{A}{\square} \sqrt{7}$	Ab7C.

Random Number Generation

Rand Random Key: To generate a random number * The value being generated will differ each time between 0.000 and 0.999 .
Example: $\stackrel{\text { santin }}{\square}$
(0.132)*

Complex Number Calculation

$\stackrel{\text { SHIFT }}{\square}$: To enter complex mode.
a Real Part Key: For storing the real number in Complex mode.
b Imaginary Part Key: For storing the imaginary number in Complex mode.

Example:

Value	Operation	Display
$\begin{aligned}(12-3 i)- & (4+7 i) \\ = & 8-10 \mathrm{i}\end{aligned}$		(CPLX) 8. -10.
$(6-7 i) \times(-8+9 \mathrm{i})$ $=15+110 \mathrm{i}$	6 a 7 $(-)$ b \times 8 $(-)$ a 9 b \boxed{b} b b	15. 110.

Rectangular \longleftrightarrow Polar Conversion See P. 36 "Basic Function Calculations".

3. Order Of Operations

The calculator will automatically determine the operation priority of each individual command as follows:

HIGHEST PRIORITY

1. Calculation within parentheses ().
2. Exponent (EXP):
3. Function keys:
$x^{3}, x^{2}, x^{-1}, x!, \circ \%, 4 \circ \%, \%$
Angle unit conversions (DRG- DRG)
$\sqrt{ }, \sqrt[3]{ }, \log , \ln , \mathrm{e}^{\mathrm{x}}, 10^{\mathrm{x}}$,
sin, $\cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1}$, sinh, cosh, tanh, $\sinh ^{-1}, \cosh ^{-1}, \tanh ^{-1}$
4. Fractions (ab/c, d/c)
5. Negative value ((-))
6. Powers and roots: x^{y}, x^{x}
7. Permutations (nPr) and combinations (nCr)
8. \times, \div
9.,+-

Example: $5 \div 4^{2} \times 7+3 \times 0.5^{{ }^{\text {COS60 }}}=4.308820344$

Levels of calculations (Stack Memory)

During actual calculation, lower precedence
calculations are stored in the stack memory and then processed in turn. This stack memory can store up to 5 levels of calculations.

4. Calculation Range

- If the result of a calculation is out of the range indicated here, an error occurs.
- For the calculation range during function calculation, refer to P. 36 " Operation Range and Accuracy".

Decimal Numbers

A maximum of 10 digits in the mantissa, or 10 digits in the mantissa with 2 digits in the exponent, can be entered or displayed. A negative value is indicated by adding a minus (-) sign, the calculation range is defined as follows:

Binary Numbers

Binary integers of up to 10 digits can be entered and displayed. Negative binary values are expressed by their two's complement. The calculation range is defined as follows:

Octal Number

A maximum of 10 octal digits can be entered and displayed. Negative octal values are expressed by their two's complement. The calculation range is defined as follows:
\uparrow Out of Range

\downarrow Out of Range

Hexadecimal Numbers

A maximum of 10 hexadecimal digits can be entered and displayed. Negative hexadecimal values are expressed by their two's complement. The calculation range is defined as follows:

Two's Complement Calculation

In computer calculations the complement is used to express negative values without using + and - signs. Subtraction is performed by adding the complement.
Example: Enter 1 in binary and subtract 1 three times.

Operation	Display	Decimal
	(BIN) 0. 1. 0. 1111111111. 1111111110.	$\begin{gathered} 1 \\ 0 \\ -1 \\ -2 \end{gathered}$

5. Statistical Calculations

Basic procedure

- Press $\stackrel{\text { Shlirl }}{\square}$ SATT. The "STAT" indicator lights up.
- Enter the first data and press $\underset{\text { Data }}{\leftrightarrows}$.
- After entering the data, press the statistical calculation keys (e.g. $\stackrel{\text { s. }}{\square}, \stackrel{\bar{x}}{\square}$).
- Press $\stackrel{\text { shilif }}{\square}$ statio exit the statistical calculation mode and clear the statistical calculation memory.

Example:

Operation	Display	Explanation
	(STAT)(10. 1. 1. 20. 2. 30. 3. 40. 4. 50. 5. 30. 5. 15.8113883. 150. 5500. 14.14213562. 10. 50.	Statistic mode Enter 10 Data 1 entry Enter 20 Data 2 entry Enter 30 Data 3 entry Enter 40 Data 4 entry Enter 50 Data 5 entry Mean of x Total number of data sample Sample Standard Deviation of x Summation of x Sum of Square of the value Population of Standard Deviation of x The min data The max data

Add / Delete Statistical Data

- Use $\underset{\text { Data }}{\square}$ and

Example: Add LCD current display

Operation	Display	Explanation
T SHIT	(STAT) 0.	Statistic mode
10	10.	Enter 10
$\stackrel{\square}{\text { Data }}$	1.	Data 1 entry
(2) 0	20.	Enter 20
Data	2.	Data 2 entry
Data	3.	Data 3 entry

Example: Delete LCD display

Operation	Display	Explanation
$\stackrel{\text { shlf }}{ }$	(STAT) 0.	Statistic mode
10	10.	Enter 10
Data	1.	Data 1 entry
(2) 0	20.	Enter 20
Dota	2.	Data 2 entry
(3) 0	30.	Enter 30
Dota	3.	Data 3 entry
(4) 0	40.	Enter 40
Dota	4.	Data 4 entry
	3.	Delete data
$\stackrel{\text { sfilf }}{ } \stackrel{[\Sigma x]}{\square}$	96.	

Output of Statistical Calculation Results

Output	Operation	Equation
Number of data sample	$\stackrel{n}{\square}$	--
Mean of x	$\stackrel{\bar{x}}{\square}$	$\overline{\mathrm{x}}=\sum_{i=1}^{n} \mathrm{xi} / \mathrm{n}$
Sample standard deviation of x	s	$s=\sqrt{\sum_{i=1}^{n}(x i-\bar{x})^{2} /(n-1)}$
Population standard deviation of x		$\sigma^{n}=\sqrt{\sum_{i=1}^{n}(x i-\bar{x})^{2} / n}$
Variance of sample	$\stackrel{S}{\square}$	$v^{n-1}=\sum_{i=1}^{n}(x i-\bar{x})^{2} /(n-1)$
Variance of population	$\stackrel{x^{2}}{\square}$	$V^{n}=\sum_{i=1}^{n}(x i-\bar{x})^{2} / n$
Summation of x	$\stackrel{\text { 「SHIF }}{\square}$	$\Sigma \mathrm{x}$
Sum of Square	$\stackrel{\text { SHFT }}{ } \stackrel{\left[\Sigma x^{2}\right]}{\square}$	$\Sigma \mathrm{x}^{2}$

Statistical Calculation Examples

You bought 20 pieces of pizza. However, the diameter of each pizza is varied as shown in the following table. Please calculate the statistic based on this information.

Diameter	Midpoint	Frequency
$27.6 \sim 28.5$	28	2
$28.6 \sim 29.5$	29	4
$29.6 \sim 30.5$	30	5
$30.6 \sim 31.5$	31	6
$31.6 \sim 32.5$	32	3
		(20 in total)

Operation	Display	Explanation
(ON O	(STAT) 0.	Statistic mode
$\stackrel{\text { shlir }}{\square} \mathrm{AX} 4$	0.0000	Decimal digit specification
$2 \pi x=2$	2.0000	Give the sum of frequency
29×4	6.0000	
(3) 0×5 Data	11.0000	
$3 \times 1 \times$ Data	17.0000	
	20.0000	
$\stackrel{n}{\square}$	20.0000	Total number of data sample
$\bar{\square}$	30.2000	Mean of x
$\stackrel{\square}{\text { sHIIF }} \stackrel{[\Sigma x]}{\sim}$	604.0000	Summation of x
$\stackrel{\text { sHIF }}{\square} \stackrel{\left.\Sigma x^{2}\right]}{\square}$	18270.0000	Sum of Square of the value
$\stackrel{s}{\square}$	1.2397	Sample standard deviation of x
$\stackrel{[0]}{\square}$	1.2083	Population of standard deviation of x

6. Errors

The calculator will overflow in the following instances. Further calculations will not be possible as the calculator will be electronically locked.

- When the calculation result is outside the following range:
$\mathrm{x}=0,1 \times 10^{-99} \leqq|x|<1 \times 10^{100}$
x : Calculation result
- When the contents of the memory are outside the following range:
$\mathrm{x}=0,1 \times 10^{-99} \leqq|\mathrm{x}|<1 \times 10^{100}$
x : Memory contents
(The data stored before the overflow error are retained.)
- When numbers are entered outside the following range and a basic function key (,,$+- \times, \div$) is pressed.
$x=0,1 \times 10^{-99} \leqq|x|<1 \times 10^{100}$
-When a $\div 0$ (division by 0) is performed.
- When data exceeds the range of any function or statistical calculation.
- During statistical calculation;
(1) If \mathbf{S} is calculated with only one data input
(2) To find \bar{x}, σ and \mathbf{S} when $\mathrm{n}=0$
(3) When any input is outside the allowable calculation range:
$x=0,1 \times 10^{-99} \leqq|x|<1 \times 10^{100}$
x : calculation result
(4) When any input is outside the allowable calculation range:

$$
x=0,1 \times 10^{-99} \leqq|x|<1 \times 10^{100}
$$

-When the number of operators stored in the calculator during parentheses and arithmetic calculation exceeds 5 levels.
-When more than 15 open paretheses are used at one time.
The overflow display is: (E
0.)

Press $\left[\frac{O N}{C A}\right.$, to clear the error.

CALCULATION EXAMPLES

1. Decimal Calculations (Degree Mode) Initial mode setting:
Calculation Mode: Decimal Degree Mode 'shlfir) $\stackrel{\text { DRG }}{ }$
Display Mode: Floating Mode
Decimal Point:
Resetting
$\stackrel{\text { 「SHF }}{\square} \stackrel{\mathrm{RX}}{\square}$

Addition and Subtraction

Example	Operation	Display
$8+3+5.5=16.5$	$8+3$	5
	-5	
$4-7-3=-6$	$4-7$	16.5
	-3	3

Multiplication and Division

Example	Operation	Display
$3.6 \times 1.7=6.12$		6.12
$\begin{aligned} & 592 \div 4.8= \\ & 123.3333333 \end{aligned}$	5 9 2 \div 4 -7 8 5	123.3333333

Mixed Calculations

Example	Operation	Display
$3+5 \times 7=38$	$\begin{aligned} & 3 \\ & \hline \end{aligned}+5 \times \sqrt{x}$	38.
$\begin{aligned} & 6 \times 9+3 \div 2= \\ & 55.5 \end{aligned}$	$\begin{aligned} & \hline 6 \times 19+3 \\ & \div=20 \end{aligned}$	55.5

Exponential Calculations

Example	Operation			Display
$\left(321 \times 10^{-14}\right) \times$	3	2	1	ExP
$\left(65 \times 10^{28}\right)=$	4	1		
$(1-)$	\times	6	5	
2.0865×10^{18}	ExP	2	8	$=$
	2.0865^{18}			

Fractional Calculations

Example	Operation	Display
$\frac{2}{3}+3 \frac{4}{7}-\frac{5}{4}=2 \frac{83}{84}$		2ப83 ¢ $^{\text {8 }}$.
$\begin{aligned} & \left(\frac{3}{5}+2 \frac{3}{8}\right) \times \frac{2}{5} \div 2-1 \\ & =-\frac{81}{200} \end{aligned}$		-81 ± 200.

Constant Calculations

Example	Operation	Display
$2+\underline{3}=5$	(2) \dagger -	5.
$4+\underline{3}=7$	4 -	7.
$1-\underline{2}=-1$	1) - \square^{-1}	-1.
$2-\underline{2}=0$	2 O	0.
$3 \times 2=6$	(3) \times 2	6.
$\underline{3} \times 4=12$	4 ($\#$	12.
$6 \div 3=2$	(6) $\div 3$ -	2.
$9 \div \underline{3}=3$	9 O	3.

Parentheses Calculations

Example	Operation	Display
$3+[(4-3.6+5) \times$	3 + $904 \square$	
$0.8-6] \times 4.2=$	3 06 ± 50	
-4.056	$\times \square 8 \square 6 \square$	
	x $4 \rightarrow 20$	-4.056

Percentage Calculations

Example	Operation	Display
$200 \times 17 \%=34$		34.
$\frac{456}{789} \times 100=$ 57.79467681%		57.79467681

Constant Percentage Calculations

Example	Operation	Display
12\% $\times 1200=144$		144.
$\underline{12 \%} \times 1500=180$	150000	180.
$\begin{aligned} & \frac{765}{987} \times 100 \%= \\ & 77.50759878 \% \end{aligned}$	$\begin{array}{lllll} \hline 7 & 6 & 5 & \div & 9 \\ 7 & 8 & 8 \\ \hline \text { sin } & 8 & 9 \end{array}$	77.50759878
$\frac{654}{987} \times 100 \%=$ 66.26139818%	(6) 40	66.26139818

Add-On (Mark Up) Calculation

Example	Operation	Display	
$200+(200 \times 20 \%)$	2000 ± 2	0	
$=240$	0	0	240.

Discount Calculation

Example	Operation	Display
200-($200 \times 20 \%$)	2) 00000	
= 160	\% \% \%	160.

Independent Memory Calculation

Example	Operation	Display
	($\mathrm{O} \times \mathrm{N} \times$ ($\mathrm{X} \times \mathrm{M}$	0.
$20 \times 30=600$	$\frac{2}{\omega+} 0 \times 300$	M 600.
$40 \times 50=2000$	$4 \sqrt{4} 0 \times 500$	M 2000.
+) $15 \times 20=300$	$\sqrt{9} \times 2000$	M 300.
2900	MR	M 2900.
-2100		M 5000.
	MR	M -2100.
	($\mathrm{ON} \times{ }_{\text {a }} \times \mathrm{X} \times \mathrm{M}$	0.

Memory Variable Calculation

2. Binary / Octal / Hexadecimal Calculations

Binary Calculations

- Addition and Subtraction (BIN): [ON

\begin{tabular}{|c|c|c|}
\hline Example \& Operation \& Display

\hline $10101011+1100$ + \& 1100000 \& \multirow[b]{7}{*}{11000101.

110111}

\hline \multirow[t]{3}{*}{$1110=11000101$} \& 110100 \&

\hline \& 0×1010 \&

\hline \& \&

\hline 11100011 - \& 1101000 \&

\hline $10101100=110111$ \& 110000 \&

\hline \& 0110000 \&

\hline
\end{tabular}

- Multiplication and Division (BIN)

Example	Operation	Display
$11 \times 1001=11011$	$\begin{array}{\|lll} \hline 1 & 1 & x \\ 10 & 0 & 0 \end{array}$	11011.
$1101110 \div 1010=$	1100101	
1011	$0 \div 10000$	1011.

Octal Calculations

- Addition and Subtraction (OCT): $\frac{O N}{C A}$ NATF

Example	Operation	Display
$654+321=1175$	$\begin{aligned} & 654+30 \\ & 65 \end{aligned}$	1175.
$741-357=362$	$\begin{aligned} & 7510-35 \\ & 70 \end{aligned}$	362.

－Multiplication and Division（OCT）

Example	Operation	Display	
$56 \times 23=1552$	5	6	$\times 2$
$621 \div 12=50$	6	2	0
	0	$\boxed{0})$	1552.

－Mixed Calculations（OCT）

Example	Operation	Display
$52+63 \times 14=$	5×2	
1216	14	4

Hexadecimal Calculations

－Addition and Subtraction（HEX）：ㅇN 돋

Example	Operation	Display
$\mathrm{AAA}+\mathrm{BB}+\mathrm{C}=$ B71 DEF－EFE＝ FFFFFFFEF1		FFFFFFFEF1．

－Multiplication and Division（HEX）

Example	Operation	Display
FEDC \times A9 $=$ A83F3C $\mathrm{CA} 11 \div \mathrm{DF}=\mathrm{E} 7$		A83F3C． E7．

－Mixed Calculations（HEX）

Example	Operation	Display
$\begin{aligned} & (A B+9) \times D \div F= \\ & 9 C \end{aligned}$		9 C ．

3. Basic Function Calculations

Pi Function: ${ }^{\pi}$

Example	Operation	Display
$\pi \times 10$		31.41592654

Trigonometric Functions: sin cos tan

Example	Operation	Display
$\begin{aligned} & \sin 53=0.79863551 \\ & \cos \frac{\pi^{\text {RAD }}}{6}= \\ & 0.866025403 \\ & \tan 65^{\text {GRAD }}= \\ & 1.631851687 \end{aligned}$	[DEG mode] 53 sin [RAD mode] $\stackrel{\pi}{\square} \because$ 6 © \cos [GRAD mode] 65 tan	0.79863551 0.866025403 1.631851687

Inverse Trigonometric Functions: $\stackrel{\sin ^{-1}}{\cos ^{-1} \tan ^{-1}}$

Example	Operation	Display
$\sin ^{-1} 0.3=$	[DEG mode] 0 -	
17.45760312°		17.45760312
$\cos ^{-1} 0.8=$	[DEG mode] -8.8	
36.86989765°		36.86989765
tan- $1.5=$	[DEG mode] 105	
56.30993247°	$\sin ^{\sin -1}$	56.30993247

Logarithmic Functions: 109

Example	Operation	Display
$\left\lvert\, \begin{aligned} & \log 123= \\ & 2.089905111 \\ & \ln 123= \\ & 4.812184355 \end{aligned}\right.$	$\begin{array}{\|llll} \hline 1 & 2 & 3 & \log \\ 1 & 2 & 3 & 1 n \end{array}$	2.089905111 4.812184355

Logarithmic Mean: \mid n

Example	Operation	Display
$\mathrm{L}=\frac{4-8}{\ln 4-\ln 8}=$	104 -8] \dagger	
5.770780164	$\begin{array}{ll} 10 & 40-8 \\ 10 & n \end{array}$	5.770780164

Exponential Functions: $\stackrel{10^{x}}{\square} / \stackrel{e^{x}}{\square}$

Example	Operation	Display
$\mathrm{e}^{22}=3584912846$	(2) 2) satif ${ }^{\text {e }}$	3584912846
$10^{23}=199.5262315$	2) - 3 (Aff $0^{\text {a }}$	199.5262315

Square Calculations: x^{2}

Example	Operation	Display
$1.25^{2}=1.5625$	10	0

Cubic Calculations: $x^{x^{3}}$

Example	Operation	Display	
$5.43^{3}=$ 160.103007	5	-4	3

Power Calculations: $x^{\text {r }}$

Example	Operation	Display
$\begin{aligned} & 2.111^{5}= \\ & 41.82272021 \end{aligned}$	$\frac{2}{9}-10 x 5$	41.82272021

Constant Power Calculations: x

Example	Operation	Display
$2^{2344}=$	(2) x^{2} - 34	
5.063026376	Ξ	5.063026376
$3^{234}=13.07566351$	$3 \square$	13.07566351
$4^{234}=25.63423608$	$4)$	25.63423608

Extraction of Square Root: \checkmark

Example	Operation	Display
$\sqrt{(5+6) \times 7}=$	$\square 5$	
8.774964387	7	5

Multiple Root: $\stackrel{x^{1 / 2}}{\square}$

Example	Operation	Display	
$\sqrt[5.3]{100}=$	100	0	
2.384286779	-3	0	5

Constant Multiple Root Calculations: $x^{1 / 3}$

Example	Operation	Display
$\sqrt[5]{1024}=4$		4.
$\sqrt[5]{3125}=5$	(3) 1 2 5	5.
$\sqrt[5]{7776}=6$	7776	6.

Geometric Mean: $\stackrel{x^{3 / 3}}{\square}$

Example	Operation	Display
$\bar{G}=\sqrt[4]{1.23 \times 1.48 \times 1.96 \times 2.2}$	1723	
$=1.673830182$	± 104	
	8×1	
	(9) 6×2	
	- 20 (sforic	
	$x^{\frac{13}{3}} 40$	1.673830182

Extraction of Cubic Root: $\sqrt[3]{\square}$

Example	Operation	Display
$\sqrt[3]{123}=$ 4.973189833	(1) 23 3 siff ${ }^{3}$	4.973189833

Reciprocal Calculations: $\stackrel{x^{-1}}{\square}$

Example	Operation	Display
$\frac{1}{2 \times 3+4}=0.1$	$\begin{array}{ll} 2 & \boxed{x}-3+4 \Theta \\ x^{-1} \end{array}$	0.1

Trigonometric Calculations: ${\stackrel{x}{ }{ }^{-1}}_{\square}$

Example	Operation	Display
$\operatorname{cosec} x=1 / \sin x$	[DEG mode]	
$\operatorname{cosec} 45^{\circ}=$	45	$5 \sin$
1.414213562	x^{-1}	

Factorial Calculations: $\stackrel{x!}{\square}$

Example	Operation	Display
$(4 \times 2-3)!=120$		120.

Hyperbolic Functions: hyp

Example	Operation	Display
$\begin{aligned} & \hline \cosh 34= \\ & 2.917308713 \times 10^{14} \\ & \tanh 1.23= \\ & 0.842579325 \end{aligned}$		2.917308713^{14} 0.842579325

Degree \rightarrow Radian Conversion: [RG

Example	Operation	Display
$60^{\circ}=$	[DEG mode]	
$1.047197551^{\text {PAD }}$	$60{ }^{\text {SHAF }}{ }^{\text {DRGP }}$	1.047197551

Radian \rightarrow Gradient Conversion: $\stackrel{\text { RRGr }}{\square}$

Example	Operation	Display
$2^{\text {RAD }}=$	[RAD mode]	
$127.3239545^{\text {GAAD }}$	(2) $\stackrel{\text { SFF }}{ }$	127.3239545

Gradient \rightarrow Degree Conversion: $\stackrel{\text { DRGr }}{\square}$

Example	Operation	Display
$120^{\text {GAAD }}=108$	[GRAD mode]	
		108.

Permutations (of \boldsymbol{n} things taken r at a time): $\stackrel{\mathrm{nfr}}{\square}_{\square}^{5}$

Example	Operation	Display
$\left.\begin{array}{l}\mathrm{n}_{\mathrm{r}}=\frac{n}{(n-r)!} \\ { }_{5} \mathrm{P}_{3}=\frac{5}{(5-3)!}\end{array}\right) 60$	5	60.

Combinations (of \mathbf{n} things taken r at a time): ${ }^{\mathrm{ncr}}$

Example	Operation	Display
$\begin{aligned} & { }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{1!(n-r)!} \\ & { }_{5} \mathrm{C}_{3}=\frac{5!}{3!(5-3)!}=10 \end{aligned}$		10.

Rectangular \rightarrow Polar Conversion: $\stackrel{R+P}{\square}$

Example	Operation	Display
		2. 60.

Polar \rightarrow Rectangular: $\stackrel{\text { R+P }}{\square}$

Example	Operation	Display
		1.732050808

Degrees-Minutes-Seconds (DMS) \rightarrow Decimal Degrees: .0

Example	Operation	Display
$123^{\circ} 45^{\prime} 06^{\prime \prime} \rightarrow$	12 3 里 450	
123.7516667°	06000	123.7516667

Decimal Degrees \rightarrow Degrees-Minutes-Seconds: $\stackrel{\square}{\square}$

Example	Operation	Display
$2.3456 \rightarrow$	2	3
$2^{\circ} 20^{\prime} 44.16^{\prime \prime}$	$=5$	6

4. Applied Calculations

Electricity - Integrating Circuit Problem
Obtain the voltage Vc across the capacitor at $\mathrm{t}=56 \mathrm{~ms}$ after the switch is turned on.

Example	Operation	Display
$\begin{aligned} & \mathrm{VC}_{\mathrm{C}}=\mathrm{Vi}_{\mathrm{I}}\left(1-\mathrm{e}^{\left.-\frac{1}{\mathrm{RC}}\right)}\right. \\ & =100 \times\left(1-\mathrm{e}^{\left.-\frac{56 \times 10^{-3}}{1500 \times 50 \times 10^{-6}}\right)}\right. \\ & =52.60562649 \end{aligned}$		52.60562649

Algebra

The Root of a Quadratic Equation (only for problems having a real root)

Example	Operation		Display	
$4 x^{2}+9 \mathrm{x}+2=0$	9	x^{2}	-	4

Calculation of time
Example 1: The air flight departs at 2 o'clock 9 minutes and 56 seconds ($2^{\circ} 09^{\prime} 56^{\prime \prime}$), and arrives at 4 o'clock $^{\prime}$ 18 minutes and 23 seconds ($4^{\circ} 18^{\prime} 23^{\prime \prime}$).
What is the travel time

Example	Operation	Display
$4^{\circ} 18^{\prime 2} 3^{\prime \prime}$ -	4 ¢ 4.1080	
$2^{\circ} 09^{\prime} 56{ }^{\prime \prime}=$		
$2^{\circ} 08^{\prime} 27^{\prime \prime}$	(9) $\because 4.60$	$2^{\circ} 8^{\prime} 27^{\prime \prime}$

Example 2:

The following shows the amount of time worked in three days. What was the total time?
1 st day : 5 hours 46 minutes ($5^{\circ} 46^{\prime}$)
2nd day: 4 hours 39 minutes ($4^{\circ} 39^{\prime}$)
3rd day : 3 hours 55 minutes ($3^{\circ} 55^{\prime}$)

Example	Operation	Display
$5^{\circ} 46^{\prime}+4^{\circ} 39^{\prime}+$		
$3^{\circ} 55^{\prime}=14^{\circ} 20^{\prime}$		
	(3) 0.650	$14^{\circ} 20^{\prime \prime}{ }^{\prime \prime}$

5. Operation Range and Accuracy

Internal digits: 14

Accuracy*: ± 1 at the $10^{\text {th }}$ digits
Output Ranges : 1×10^{-99} to $\pm 9.999999999 \times 10^{99}$

Function	Input
$n \mathrm{Pr}$	$0 \leqq r \leqq n \leqq 9999999999$ (r and n are integer) result $<1 \times 10^{100}$
nCr	$0 \leqq r \leqq n \leqq 9999999999$ (r and n are integer) result $<1 \times 10^{100}$
x^{y}	$-1 \times 10^{100}<y \cdot \ln \|x\| \leqq 230.2585092$ $x>0$...The above range $x<0 \ldots y$ (integer) or, $1 / y$ (odd, $y \neq 0$) ... The above range $x=0 \ldots 0<y$
$x^{1 / y}$	$-1 \times 10^{100}<1 / y \cdot \ln \|x\| \leqq 230.2585092$ $x>0 \ldots$ The above range $x<0 \ldots y$ (odd) or, $1 / y$ (integer, $y \neq 0$) ... The above range $x=0 \ldots 0<y$
$R \rightarrow P$	$\begin{aligned} & \|x\|,\|y\|<1 \times 10^{100} \\ & \left(x^{2}+y^{2}\right)^{1 / 2}<1 \times 10^{100} \\ & y / x \text { same as } \tan ^{-1} x \end{aligned}$
$P \rightarrow R$	$\begin{aligned} & 0 \leqq r<1 \times 10^{100} \\ & \theta: \text { same as } \sin x, \cos x \end{aligned}$
O/III	$0 \leqq\|x\| \leqq 999999.9999$ When input > 999999.9999 the result can not converted to DMS by
<0/ 11	$0 \leqq\|x\| \leq 999999{ }^{\prime \prime} 9^{\prime}$
DEG \rightarrow RAD	$0 \leqq\|x\|<1 \times 10^{100}$
RAD \rightarrow GRAD	$0 \leqq\|x\| \leqq 1.570796326 \times 10^{98}$
GRAD \rightarrow DEG	$0 \leqq\|x\|<1 \times 10^{100}$

Function		Input
	$(x 1+y 1 i) \underset{\underset{\sim}{x}}{\stackrel{+}{x}}(x 2+y 2 i)$	
	Addition Subtraction	$\begin{aligned} & \|\times 1+x 2\|<1 \times 10^{100} \\ & \|y 1+y 2\|<1 \times 10^{100} \end{aligned}$
	Multiplication	$\begin{aligned} & (x 1 \times 2-y 1 y 2)<1 \times 10^{100} \\ & (x 1 y 2+y 1 x 2)<1 \times 10^{100} \\ & (x 1 x 2),(y 1 y 2),(x 1 y 2),(y 1 x 2)<1 \times 10^{100} \end{aligned}$
	Division	$\begin{aligned} & \frac{x 1 \times 2+y 1 y 2}{x 2^{2}+y 2^{2}}, \frac{y 1 \times 2-x 1 y 2}{x 2^{2}}<12^{2}<10^{100} \\ & x 2^{2}+y 2^{2}, x 2^{2}, y 2^{2}, x 1 x 2+y 1 y 2, y 1 x 2-x 1 y 2, x 1 x 2, \\ & y 1 y 2, y 1 x 2, x 1 y 2<1 x 10^{100} \\ & \hline \end{aligned}$
\rightarrow DEC		The following operation range after the conversion. $0 \leqq\|x\| \leqq 9999999999$
$\rightarrow \mathrm{BIN}$		The following operation range after the conversion. $\begin{aligned} & 1000000000 \leqq x \leqq 1111111111 \\ & 0 \leqq x \leqq 1111111111 \end{aligned}$
\rightarrow OCT		The following operation range after the conversion. $4000000000 \leqq x \leqq 7777777777$ $0 \leqq x \leqq 3777777777$
\rightarrow HEX		The following operation range after the conversion. FDABF41C01 $\leqq x \leqq F F F F F F F F F F$ $0 \leqq x \leqq 2540 \text { BE3FF }$
	DATA INPUT	$\begin{aligned} & \|x\|<1 \times 10^{100} \\ & \|\Sigma x\|<1 \times 10^{100} \\ & \Sigma x^{2}<1 \times 10^{100} \\ & n=\text { Integer } \\ & \|n\|<1 \times 10^{100} \end{aligned}$
	$\overline{\text { x }}$	$\mathrm{n} \neq 0$
	s	$\begin{aligned} & n \neq 1, n \neq 0 \\ & 0 \leqq \frac{\Sigma x^{2}-\left\{\left(\sum x\right)^{2} / n\right\}}{n-1}<1 \times 10^{100} \end{aligned}$
	$x \sigma^{n}$	$\begin{aligned} & n \neq 0 \\ & 0 \leqq \frac{\Sigma x^{2}-\left\{(\Sigma x)^{2} / n\right\}}{n}<1 \times 10^{100} \end{aligned}$

* In the case of consecutive calculations, errors are cumulative. This is also true when internal consecutive calculations are performed; for example, (x^{y}) , $x^{1 / y}, x!$, $\mathrm{nPr}, \mathrm{nCr}$, etc. In this case, the cumulative data may become large.

BATTERY REPLACEMENT

When the display characters are dim, turn it off, and replace the alkaline battery immediately.
Please replace the alkaline battery using the following procedure:

1. Press OFF to power off the calculator.
2. Remove the screw that secrues the battery cover in place.
3. Slide the battery cover slightly and lift it.
4. Remove the old battery with a ball point pen or similar sharp object.
5. Load the new battery with positive " + " side facing up.
6. Replace the battery cover, tighten the screw, and press $\frac{O \mathrm{ON}}{\mathrm{CA}}, \stackrel{\text { 「SHITIT }}{\square}+\stackrel{\bullet \text { RESE }}{\square}$ to initialize the calculator.

Battery Replacement
CAUTION: There is risk of explosion if the battery is replaced by an incorrect type. Dispose of used battery according to the below instructions.

(!)Electromagnetic interference or electrostatic discharge may cause the display to malfunction or the contents of the memory to be lost or altered. Should this occur, press $\frac{O N}{C A}$ to restart the calculator.

ADVICE AND PRECAUTIONS

- This calculator contains precision components such as LSI chips and should not be used in a place subject to rapid variations in temperature, excessive humidity dirt or dust, or exposed to direct sunlight.
- The liquid crystal display panel is made of glass and should not be subjected to excessive pressure.
- When cleaning the device do not use a damp cloth or volatile liquid such as paint thinner. Instead, use only a soft, dry cloth.
- Do not under any circumstances, disassemble this device. If you believe that the calculator is not functioning properly, either bring or mail the device together with proof of purchase to a Canon Business office service representative.
- Never dispose the calculator improperly such as burning; it can create risks of personal injury or harm. You are suggested to dispose this product according to your national law.
- Replace the battery once every two years even it is not used frequently.

Battery Caution!

- Keep the Battery out of reach of children. If the battery is swallowed, contact a doctor immediately.
- Misuse of battery may cause leakage, explosion, damages or personal injury.
- Don't recharge or disassemble the battery, it could cause a short circuit.
- Never expose the battery to high temperatures, direct heat, or dispose by incineration.
- Never leave a dead battery in the calculator as the dead battery may leak and cause damage to the calculator.
- Continue using the calculator in the low battery condition may cause improper calculations or the stored memory may get corrupted or lost completely. Keep written records of important data all the time; and replace the battery as soon as possible.

When you are not sure of the current calculations and setting mode, you are recommended to initialize the calculator to default value by pressing $\stackrel{\text { SHAF }}{\square}+\square^{- \text {RESE }}$.

SPECIFICATIONS

Power Supply	Alkaline battery (LR54 x 1)
Power Consumption: DC1.5V / 0.038mW	
Battery Life	: Approximately 2.5 years (Based on 1 hour operation
Auto power off	Approx. 7 minutes
Usable Temperature : $0^{\circ} \sim 40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\right)$	
Size: 122 (L) $\times 73$ (W) $\times 12$ (H) mm (with cover)	
$4-51 / 64$ " $\times 2-7 / 8^{\prime \prime} \times 15 / 32$ " (with cover)	
ight : $70 \mathrm{~g}(2.4 \mathrm{oz})$ with cover	
Specifications are s	hange

For CA, USA Only

Included battery contains perchlorate material - special handling may apply.
See http://www.dtsc.ca.gov/hazardouswaste/perchlorate/ for detail.

